如何手撸一个自有知识库的RAG系统

如何手撸一个自有知识库的RAG系统

技术博客 admin 495 浏览

RAG通常指的是"Retrieval-Augmented Generation",即“检索增强的生成”。这是一种结合了检索(Retrieval)和生成(Generation)的机器学习模型,通常用于自然语言处理任务,如文本生成、问答系统等。

我们通过一下几个步骤来完成一个基于京东云官网文档的RAG系统

  • 数据收集
  • 建立知识库
  • 向量检索
  • 提示词与模型

数据收集

数据的收集再整个RAG实施过程中无疑是最耗人工的,涉及到收集、清洗、格式化、切分等过程。这里我们使用京东云的官方文档作为知识库的基础。文档格式大概这样:

swift
复制代码
{ "content": "DDoS IP高防结合Web应用防火墙方案说明\n=======================\n\n\nDDoS IP高防+Web应用防火墙提供三层到七层安全防护体系,应用场景包括游戏、金融、电商、互联网、政企等京东云内和云外的各类型用户。\n\n\n部署架构\n====\n\n\n[![\"部署架构\"](\"https://jdcloud-portal.oss.cn-north-1.jcloudcs.com/cn/image/Advanced%20Anti-DDoS/Best-Practice02.png\")](\"https://jdcloud-portal.oss.cn-north-1.jcloudcs.com/cn/image/Advanced%20Anti-DDoS/Best-Practice02.png\") \n\nDDoS IP高防+Web应用防火墙的最佳部署架构如下:\n\n\n* 京东云的安全调度中心,通过DNS解析,将用户域名解析到DDoS IP高防CNAME。\n* 用户正常访问流量和DDoS攻击流量经过DDoS IP高防清洗,回源至Web应用防火墙。\n* 攻击者恶意请求被Web应用防火墙过滤后返回用户源站。\n* Web应用防火墙可以保护任何公网的服务器,包括但不限于京东云,其他厂商的云,IDC等\n\n\n方案优势\n====\n\n\n1. 用户源站在DDoS IP高防和Web应用防火墙之后,起到隐藏源站IP的作用。\n2. CNAME接入,配置简单,减少运维人员工作。\n\n\n", "title": "DDoS IP高防结合Web应用防火墙方案说明", "product": "DDoS IP高防", "url": "https://docs.jdcloud.com/cn/anti-ddos-pro/anti-ddos-pro-and-waf" }

每条数据是一个包含四个字段的json,这四个字段分别是"content":文档内容;"title":文档标题;"product":相关产品;"url":文档在线地址

向量数据库的选择与Retriever实现

向量数据库是RAG系统的记忆中心。目前市面上开源的向量数据库很多,那个向量库比较好也是见仁见智。本项目中笔者选择则了clickhouse作为向量数据库。选择ck主要有一下几个方面的考虑:

  • ck再langchain社区的集成实现比较好,入库比较平滑
  • 向量查询支持sql,学习成本较低,上手容易
  • 京东云有相关产品且有专业团队支持,用着放心

文档向量化及入库过程

为了简化文档向量化和检索过程,我们使用了longchain的Retriever工具集
首先将文档向量化,代码如下:

ini
复制代码
from libs.jd_doc_json_loader import JD_DOC_Loader from langchain_community.document_loaders import DirectoryLoader root_dir = "/root/jd_docs" loader = DirectoryLoader( '/root/jd_docs', glob="**/*.json", loader_cls=JD_DOC_Loader) docs = loader.load()

langchain 社区里并没有提供针对特定格式的装载器,为此,我们自定义了JD_DOC_Loader来实现加载过程

python
复制代码
import json import logging from pathlib import Path from typing import Iterator, Optional, Union from langchain_core.documents import Document from langchain_community.document_loaders.base import BaseLoader from langchain_community.document_loaders.helpers import detect_file_encodings logger = logging.getLogger(__name__) class JD_DOC_Loader(BaseLoader): """Load text file. Args: file_path: Path to the file to load. encoding: File encoding to use. If `None`, the file will be loaded with the default system encoding. autodetect_encoding: Whether to try to autodetect the file encoding if the specified encoding fails. """ def __init__( self, file_path: Union[str, Path], encoding: Optional[str] = None, autodetect_encoding: bool = False, ): """Initialize with file path.""" self.file_path = file_path self.encoding = encoding self.autodetect_encoding = autodetect_encoding def lazy_load(self) -> Iterator[Document]: """Load from file path.""" text = "" from_url = "" try: with open(self.file_path, encoding=self.encoding) as f: doc_data = json.load(f) text = doc_data["content"] title = doc_data["title"] product = doc_data["product"] from_url = doc_data["url"] # text = f.read() except UnicodeDecodeError as e: if self.autodetect_encoding: detected_encodings = detect_file_encodings(self.file_path) for encoding in detected_encodings: logger.debug(f"Trying encoding: {encoding.encoding}") try: with open(self.file_path, encoding=encoding.encoding) as f: text = f.read() break except UnicodeDecodeError: continue else: raise RuntimeError(f"Error loading {self.file_path}") from e except Exception as e: raise RuntimeError(f"Error loading {self.file_path}") from e # metadata = {"source": str(self.file_path)} metadata = {"source": from_url, "title": title, "product": product} yield Document(page_content=text, metadata=metadata)

以上代码功能主要是解析json文件,填充Document的page_content字段和metadata字段。

接下来使用langchain 的 clickhouse 向量工具集进行文档入库

ini
复制代码
import langchain_community.vectorstores.clickhouse as clickhouse from langchain.embeddings import HuggingFaceEmbeddings model_kwargs = {"device": "cuda"} embeddings = HuggingFaceEmbeddings( model_name="/root/models/moka-ai-m3e-large", model_kwargs=model_kwargs) settings = clickhouse.ClickhouseSettings( table="jd_docs_m3e_with_url", username="default", password="xxxxxx", host="10.0.1.94") docsearch = clickhouse.Clickhouse.from_documents( docs, embeddings, config=settings)

入库成功后,进行一下检验

ini
复制代码
import langchain_community.vectorstores.clickhouse as clickhouse from langchain.embeddings import HuggingFaceEmbeddings model_kwargs = {"device": "cuda"}~~~~ embeddings = HuggingFaceEmbeddings( model_name="/root/models/moka-ai-m3e-large", model_kwargs=model_kwargs) settings = clickhouse.ClickhouseSettings( table="jd_docs_m3e_with_url_splited", username="default", password="xxxx", host="10.0.1.94") ck_db = clickhouse.Clickhouse(embeddings, config=settings) ck_retriever = ck_db.as_retriever( search_type="similarity_score_threshold", search_kwargs={'score_threshold': 0.9}) ck_retriever.get_relevant_documents("如何创建mysql rds")

有了知识库以后,可以构建一个简单的restful 服务,我们这里使用fastapi做这个事儿

ini
复制代码
from fastapi import FastAPI from pydantic import BaseModel from singleton_decorator import singleton from langchain_community.embeddings import HuggingFaceEmbeddings import langchain_community.vectorstores.clickhouse as clickhouse import uvicorn import json app = FastAPI() app = FastAPI(docs_url=None) app.host = "0.0.0.0" model_kwargs = {"device": "cuda"} embeddings = HuggingFaceEmbeddings( model_name="/root/models/moka-ai-m3e-large", model_kwargs=model_kwargs) settings = clickhouse.ClickhouseSettings( table="jd_docs_m3e_with_url_splited", username="default", password="xxxx", host="10.0.1.94") ck_db = clickhouse.Clickhouse(embeddings, config=settings) ck_retriever = ck_db.as_retriever( search_type="similarity", search_kwargs={"k": 3}) class question(BaseModel): content: str @app.get("/") async def root(): return {"ok"} @app.post("/retriever") async def retriver(question: question): global ck_retriever result = ck_retriever.invoke(question.content) return result if __name__ == '__main__': uvicorn.run(app='retriever_api:app', host="0.0.0.0", port=8000, reload=True)

返回结构大概这样:

swift
复制代码
[ { "page_content": "云缓存 Redis--Redis迁移解决方案\n###RedisSyncer 操作步骤\n####数据校验\n```\nwget https://github.com/TraceNature/rediscompare/releases/download/v1.0.0/rediscompare-1.0.0-linux-amd64.tar.gz\nrediscompare compare single2single --saddr \"10.0.1.101:6479\" --spassword \"redistest0102\" --taddr \"10.0.1.102:6479\" --tpassword \"redistest0102\" --comparetimes 3\n\n``` \n**Github 地址:** [https://github.com/TraceNature/redissyncer-server](\"https://github.com/TraceNature/redissyncer-server\")", "metadata": { "product": "云缓存 Redis", "source": "https://docs.jdcloud.com/cn/jcs-for-redis/doc-2", "title": "Redis迁移解决方案" }, "type": "Document" }, { "page_content": "云缓存 Redis--Redis迁移解决方案\n###RedisSyncer 操作步骤\n####数据校验\n```\nwget https://github.com/TraceNature/rediscompare/releases/download/v1.0.0/rediscompare-1.0.0-linux-amd64.tar.gz\nrediscompare compare single2single --saddr \"10.0.1.101:6479\" --spassword \"redistest0102\" --taddr \"10.0.1.102:6479\" --tpassword \"redistest0102\" --comparetimes 3\n\n``` \n**Github 地址:** [https://github.com/TraceNature/redissyncer-server](\"https://github.com/TraceNature/redissyncer-server\")", "metadata": { "product": "云缓存 Redis", "source": "https://docs.jdcloud.com/cn/jcs-for-redis/doc-2", "title": "Redis迁移解决方案" }, "type": "Document" }, { "page_content": "云缓存 Redis--Redis迁移解决方案\n###RedisSyncer 操作步骤\n####数据校验\n```\nwget https://github.com/TraceNature/rediscompare/releases/download/v1.0.0/rediscompare-1.0.0-linux-amd64.tar.gz\nrediscompare compare single2single --saddr \"10.0.1.101:6479\" --spassword \"redistest0102\" --taddr \"10.0.1.102:6479\" --tpassword \"redistest0102\" --comparetimes 3\n\n``` \n**Github 地址:** [https://github.com/TraceNature/redissyncer-server](\"https://github.com/TraceNature/redissyncer-server\")", "metadata": { "product": "云缓存 Redis", "source": "https://docs.jdcloud.com/cn/jcs-for-redis/doc-2", "title": "Redis迁移解决方案" }, "type": "Document" } ]

返回一个向量距离最小的list

结合模型和prompt,回答问题

为了节约算力资源,我们选择qwen 1.8B模型,一张v100卡刚好可以容纳一个qwen模型和一个m3e-large embedding 模型

  • answer 服务
ini
复制代码
from fastapi import FastAPI from pydantic import BaseModel from langchain_community.llms import VLLM from transformers import AutoTokenizer from langchain.prompts import PromptTemplate import requests import uvicorn import json import logging app = FastAPI() app = FastAPI(docs_url=None) app.host = "0.0.0.0" logger = logging.getLogger() logger.setLevel(logging.INFO) to_console = logging.StreamHandler() logger.addHandler(to_console) # load model # model_name = "/root/models/Llama3-Chinese-8B-Instruct" model_name = "/root/models/Qwen1.5-1.8B-Chat" tokenizer = AutoTokenizer.from_pretrained(model_name) llm_llama3 = VLLM( model=model_name, tokenizer=tokenizer, task="text-generation", temperature=0.2, do_sample=True, repetition_penalty=1.1, return_full_text=False, max_new_tokens=900, ) # prompt prompt_template = """ 你是一个云技术专家 使用以下检索到的Context回答问题。 如果不知道答案,就说不知道。 用中文回答问题。 Question: {question} Context: {context} Answer: """ prompt = PromptTemplate( input_variables=["context", "question"], template=prompt_template, ) def get_context_list(q: str): url = "http://10.0.0.7:8000/retriever" payload = {"content": q} res = requests.post(url, json=payload) return res.text class question(BaseModel): content: str @app.get("/") async def root(): return {"ok"} @app.post("/answer") async def answer(q: question): logger.info("invoke!!!") global prompt global llm_llama3 context_list_str = get_context_list(q.content) context_list = json.loads(context_list_str) context = "" source_list = [] for context_json in context_list: context = context+context_json["page_content"] source_list.append(context_json["metadata"]["source"]) p = prompt.format(context=context, question=q.content) answer = llm_llama3(p) result = { "answer": answer, "sources": source_list } return result if __name__ == '__main__': uvicorn.run(app='retriever_api:app', host="0.0.0.0", port=8888, reload=True)

代码通过使用Retriever接口查找与问题相似的文档,作为context组合prompt推送给模型生成答案。
主要服务就绪后可以开始画一张脸了,使用gradio做个简易对话界面

  • gradio 服务
ini
复制代码
import json import gradio as gr import requests def greet(name, intensity): return "Hello, " + name + "!" * int(intensity) def answer(question): url = "http://127.0.0.1:8888/answer" payload = {"content": question} res = requests.post(url, json=payload) res_json = json.loads(res.text) return [res_json["answer"], res_json["sources"]] demo = gr.Interface( fn=answer, # inputs=["text", "slider"], inputs=[gr.Textbox(label="question", lines=5)], # outputs=[gr.TextArea(label="answer", lines=5), # gr.JSON(label="urls", value=list)] outputs=[gr.Markdown(label="answer"), gr.JSON(label="urls", value=list)] ) demo.launch(server_name="0.0.0.0")

源文:如何手撸一个自有知识库的RAG系统

如有侵权请联系站点删除!

技术合作服务热线,欢迎来电咨询!